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Abstract 

Mechanical ventilation is employed as a supportive therapy for patients with respiratory failure, but the optimal 
ventilator settings for patient are often unknown and rely on manual adjustment by physicians. Improper parameter 
settings may lead to severe complications such as lung injury. To personalize mechanical ventilation and predict 
the optimal ventilator parameters for patients, we propose a ventilator parameter tuning algorithm. This algorithm 
integrates clinical expertise in ventilator tuning via Arterial Blood Gas (ABG) analysis with data-driven methods. We 
perform K-means clustering algorithm on patient dataset based on ABG values for the first time, and the classified 
data was used to train a deep offline reinforcement learning model based on conservative Q-learning (CQL), therefore 
we named it the K-CQL algorithm. The introduction of human expert knowledge improves the effectiveness of the 
entire model. Our evaluation based on Fitted Q Evaluation (FQE) on the MIMIC-III dataset shows that the expected 
return of the output strategy of K-CQL is 1.76 times that of the physicians, and more importantly, the introduction of 
intermediate rewards related to ABG analysis further improves it. We also demonstrated that the algorithm is capable 
of recommending mechanical ventilation parameters within a safe range according to clinical nursing standards.

Keywords:  Mechanical ventilation, Arterial blood gas analysis, Deep offline reinforcement learning, Conservative 
q-learning, K-means

Introduction
Respiratory failure is caused by multiple factors leading to 
dysfunction in pulmonary ventilation and gas exchange, 
which, if not treated in time, can result in multi-organ 
failure and even life-threatening consequences [1]. Thus, 
symptomatic and causal treatments are required based 
on clinical symptoms and test results, including the use 
of mechanical ventilation to control the disease. The opti-
mal ventilator settings vary between individuals and are 
generally unknown [2], requiring manual adjustments by 
physicians based on the patient’s condition. The accuracy 
of these adjustments is directly influenced by the physi-
cian’s knowledge and experience, and incorrect param-
eter tuning can worsen the patient’s condition or even 

lead to death. For instance, improper ventilator settings 
may cause ventilator-induced lung injury, diaphragmatic 
dysfunction, pneumonia, and oxygen toxicity [3]. To pre-
vent such complications and provide optimal care, per-
sonalized mechanical ventilation is essential. Integrating 
cutting-edge artificial intelligence (AI) technologies to 
explore suitable strategies for ventilator adjustments has 
become a critical research focus at the intersection of 
medicine and engineering.

Traditionally, recommendations for ventilator param-
eters in medical settings have relied on automatic control 
principles. For example, [4] applied adaptive fuzzy slid-
ing mode control (AFSMC) to the respiratory system to 
aid patients with respiratory distress; [5] used a propor-
tional-integral (PI) controller to develop a closed-loop 
respiratory pacemaker model. However, these traditional 
approaches often exhibit limited adaptability when it 
comes to adjusting parameters. The application of rein-
forcement learning in the medical field shows a good 
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prospect [6, 7, 9]. More recent research has proposed 
the use of machine learning to personalize mechanical 
ventilation treatments, with a focus on supervised learn-
ing and reinforcement learning (RL). In [10], a bayesian 
classification model was used to classify patient’s illness, 
followed by an artificial neural network (ANN) to output 
parameters such as frequency, tidal volume, and fraction 
of inspired oxygen. However, deep supervised learning, 
while allowing feature extraction, overlooks the sequen-
tial nature of mechanical ventilation. Furthermore, 
supervised learning methods can only imitate physician’s 
decision, which may lead to suboptimal treatment. RL, 
on the other hand, interacts with the environment and 
receives immediate feedback from patients in the form 
of rewards, considering the accumulation of future dis-
counted rewards [11–13], thereby improving physician’s 
strategies and is widely used in the medical field [6].

Recent studies have shown that RL holds great poten-
tial in mechanical ventilation. It has been proven to 
be suitable for solving decision-making problems in 
time-series data and can potentially address ventila-
tor parameter tuning [14, 15]. Peine et al. [16] described 
the ventilator management process as a Markov deci-
sion process (MDP) and employed the Q-learning algo-
rithm to recommend ventilator parameters. Chen et  al. 
[15] designed a simulated environment using a long 
short-term memory (LSTM) network and used the soft 
actor-critic (SAC) algorithm to provide clinical deci-
sion support for ventilator parameter adjustments. Kon-
drup et al. [17] introduced DeepVent, an offline deep RL 
model based on Conservative Q-learning (CQL) to pre-
dict optimal ventilator parameters, and compare it with 
Double Deep Q Network (DDQN). In [18] , transformer 
was combined with CQL [19] to propose a model capable 
of diagnosing patient’s conditions and predicting opti-
mal ventilator parameters. Zhang et al. [1] were the first 
to consider safety issues in ventilator parameter recom-
mendations by identifying the optimal policy from a fixed 
dataset.

However, to the best of our knowledge, previous work 
on modeling ventilator adjustments using MDP has pri-
marily remained theoretical, without focusing on indica-
tors of Arterial Blood Gas (ABG) analysis. In real clinical 
settings, ABG analysis indicators are highly correlated 
with the gas exchange process [20], physicians adjust 
ventilator parameters based on it, as ABG analysis pro-
vides better guidance for ventilator adjustments [21]. For 
instance, [22] developed a mathematical model based on 
ABG analysis to assess patients’ conditions and analyze 
gas exchange during ventilation. Therefore, we embed-
ded a K-means clustering model into the RL decision-
making algorithm, incorporating prior knowledge from 
physicians who use ABG analysis to adjust ventilator 

parameters. By clustering patients based on ABG analysis 
before training, this approach optimizes treatment strate-
gies and further improves therapeutic outcomes.

Our main contributions can be summarized as follows:

•	Pre-classifying patients based on ABG analysis indica-
tors is proposed for the first time, combining clini-
cal knowledge from physicians adjusting ventilators 
with data-driven algorithms, thereby incorporating 
human prior knowledge. Specifically, a ventilator 
adjustment model algorithm (termed K-CQL) using 
K-means clustering based on ABG analysis and CQL 
algorithm is developed. Additionally, intermediate 
rewards related to ABG analysis indicators is defined 
to achieve faster convergence.

•	The performance of the K-CQL algorithm, the Deep-
Vent algorithm (currently the most popular deep RL 
model for ventilator adjustment), and the physician’s 
strategies from the MIMIC-III dataset was evalu-
ated and compared using Fitted Q Evaluation (FQE) 
based on publicly available MIMIC-III dataset [23]. 
The results demonstrated that the output policy of 
K-CQL algorithm achieved the highest expected 
return value, which is 1.19 times that of the Deep-
Vent algorithm and 1.76 times that of the physicians, 
thereby exhibiting superior performance.

Related works
Algorithms for ventilation optimization
At present, methods for ventilation optimization in hos-
pitals typically rely on Proportional-Integral-Derivative 
(PID) control, which is known to be suboptimal [24]. 
Siu et  al. [25]designed a closed-loop adaptive controller 
to automatically adjust settings of ventilator based on 
analysis of arterial carbon dioxide. Ai et al. [5]introduced 
a closed-loop respiratory pacemaker, using a PI control-
ler to adapt to various ventilation conditions. However, 
traditional automatic control methods evaluate a lim-
ited number of data features and are inefficient in han-
dling high-dimensional and large-scale clinical data [26]. 
Machine learning (ML) methods have demonstrated 
their superiority in processing high-dimensional and 
large datasets, making them effective tools in the medi-
cal field for handling extensive clinical data. Zhu et  al. 
[27] applied machine learning methods such as k-nearest 
neighbors (KNN), logistic regression, decision trees, and 
extreme gradient boosting to predict mortality in venti-
lated patients. Similarly, [10, 28] used deep neural net-
works to calculate outputs for frequency, tidal volume, 
and fraction of inspired oxygen. However, these machine 
learning approaches primarily focus on the relation-
ship between ventilator parameter changes and patient 
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vital signs, without considering the long-term effects of 
ventilators on patients. Compared to classical machine 
learning methods, RL algorithms learn from interactions 
with the environment to maximize long-term rewards 
[29]. RL algorithms can simulate how clinicians opti-
mize ventilator parameters through continuous interac-
tion with patients, demonstrating potential to surpass 
clinical standards and providing strong evidence for RL’s 
application in this context. Additionally, RL’s mechanism 
of maximizing cumulative rewards enhances its perfor-
mance in solving optimization problems that account for 
long-term effects [11]. RL have shown promising results 
in off-policy evaluation for predicting continuous ven-
tilator parameters. Peine et  al. [16] used Q-learning to 
optimize ventilator settings such as positive end expira-
tory pressure, fraction of inspired oxygen, and tidal vol-
ume. Kondrup et  al. [17]were the first to combine deep 
learning with RL to adjust ventilator parameters. Chen 
et al. [15] designed a simulated environment using a long 
short-term memory (LSTM) network and utilized the 
soft actor-critic (SAC) algorithm to provide recommen-
dations. Yuan et al. [18] combined transformer and CQL 
to propose a model capable of diagnosing conditions of 
patient and predicting optimal ventilator settings. Zhang 
et al. [1] applied RL algorithms to identify optimal strat-
egies from a fixed dataset and were the first to address 
safety issues in ventilator parameter recommendations, 
ensuring improved efficacy and safety during treatment.

Models for parameter tuning
[16, 17] selected several physiological variables includ-
ing demographics, vital signs, lab values, and fluids 
as the state space in their modeling of MDP, with [17] 
incorporating changes in Acute Physiology and Chronic 
Health Evaluation II (APACHE-II) scores as part of the 
reward function. Clinically, physicians adjust ventilator 
parameters based on ABG analysis, making it necessary 
to develop a more clinically relevant RL-based ventila-
tor adjustment model to enhance practical applicability. 
Chen et  al. [15] considered ABG analysis states when 
modeling the MDP but did not appropriately define 
intermediate reward values. Wang et  al. [22] developed 
a mathematical model based on ABG analysis to deter-
mine whether the patient’s ABG analysis values were 
within normal ranges, serving as a measure of whether 
goals of mechanical ventilation were achieved. Ma et al. 
[30] used data-driven and knowledge-driven machine 
learning methods to predict organ failure in intensive 
care unit (ICU) patients in real time, incorporating clini-
cal prior knowledge. Based on these considerations, we 
embedded a classification model into the RL decision-
making algorithm. By classifying patients based on ABG 
analysis indicators before training, the prior knowledge 

of physicians using ABG analysis to adjust ventilator 
parameters is integrated, that is to say, the professional 
knowledge of physicians is effectively combined with 
data-driven algorithms to optimize treatment strategies 
and further improve treatment effects.

Background
Reinforcement learning
In a RL problem, we typically model it as a MDP, repre-
sented by the tuple (S,A,P,R, γ ) , where S denotes the 
state space, A denotes the action space, P represents the 
transition probability matrix, R and γ are the reward 
function and discount factor, respectively. A policy is 
defined as π : S → A and is trained to maximize the 
expected cumulative discounted reward in the MDP:

Generally, a Q-value function is defined to represent the 
expected cumulative reward:

Q-Learning is a classic method that trains the Q-value 
function by minimizing the Bellman error on Q:

Offline reinforcement learning and conservative 
Q‑learning
Traditional RL often refers to online RL. In this scenario, 
the agent needs to continually interact online with the 
environment to obtain feedback. However, this approach 
is not permitted in healthcare settings, as it may put 
patients at risk. Offline RL algorithms can learn effective 
policies from previously collected static datasets without 
the need for further interactions, making them highly 
applicable in clinical settings. However, in practice, 
offline RL presents a major challenge: standard offline RL 
methods may suffer from Q-value overestimation due to 
distributional shift between the dataset and the learned 
policy. In healthcare settings, this overestimation may 
translate into unsafe recommendations, putting patients 
at risk. CQL aims to address these limitations by learn-
ing a conservative Q-function, ensuring that the expected 
value of the policy is lower-bounded by the true value 
under this Q-function. CQL achieves this by introduc-
ing a conservative term that penalizes actions deviating 
significantly from the data distribution, thus preventing 
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overestimating. Specifically, it attempts to underestimate 
the Q-values of out-of-distribution (OOD) state-action 
pairs, thereby discouraging the agent from entering OOD 
states. Therefore, the optimization objective of CQL 
becomes:

The parameter α is a weighting hyperparameter used to 
control the strength of the penalty term. CQL suppresses 
the overestimation of actions that are infrequent in the 
dataset by maximizing the Q-values for actions a ∼ D 
observed in the data, while minimizing the Q-values for 
actions with high Q-values under the learned policy π.

Batch‑constrained Q‑learning
Similar to CQL, Batch-Constrained Q-learning (BCQ) 
[31] was proposed to address the distributional shift 
problem in offline reinforcement learning. BCQ primar-
ily focuses on constraining the policy’s reliance on unseen 
state-action pairs from the offline dataset to mitigate the 
risks associated with distributional shift. When learning 
a policy directly from a static dataset, BCQ attempts to 
restrict the policy’s action choices to align more closely 
with the observed behaviors, thus avoiding unsafe deci-
sions that may arise from selecting actions that deviate 
from the data distribution. It introduces a generative 
model (such as a Variational Autoencoder, VAE) to gen-
erate candidate actions that are similar to those observed 
in the data, from which actions are selected to ensure 
that the policy does not significantly deviate from the his-
torical distribution:

1(a′ ∈ VAE(a|s)) is a constraint that ensures only actions 
with a high probability in the generative model are 
selected.

This design effectively reduces the risk associated with 
out-of-distribution actions.

K‑means
K-means is an unsupervised learning clustering algo-
rithm widely applied in various data analysis and classi-
fication tasks across different fields. Its primary objective 
is to partition the samples in a dataset into k distinct clus-
ters, such that the samples within the same cluster are as 
similar as possible, while the differences between samples 
in different clusters are maximized [32]. The core idea of 
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the K-means algorithm is to minimize the total sum of 
squared errors (SSE) within clusters. The workflow of the 
algorithm is as follows: 

(1)	 Initialization: Randomly select k points as the initial 
cluster centroids;

(2)	 Cluster assignment: Assign each sample to the 
nearest cluster based on the distance between the 
sample and the cluster centroid;

(3)	 Centroid update: Recompute the centroid of each 
cluster by averaging the positions of all samples 
within the cluster;

(4)	 Iteration: Repeat steps 2 and 3 until the centroids 
converge or a predefined stopping criterion is met.

The objective function of K-means is to minimize SSE 
within the clusters.

where k is the number of clusters, Ci represents the i-
th cluster, µi is the centroid of the i-th cluster and x is a 
sample point in cluster Ci.

By iteratively adjusting the position of the cluster cen-
troids and reassigning the samples, the algorithm mini-
mizes the intra-cluster variance, achieving the optimal 
clustering outcome.

Method
An overview of the model architecture is here in Fig. 1. 
This figure illustrates a framework for ventilator param-
eter optimization that integrates expert knowledge with 
offline reinforcement learning. The overall pipeline 
begins with the analysis of patients’ ABG indices, which 
are used to cluster patients into distinct subgroups with 
similar physiological characteristics via the K-means 
algorithm. This clustering process serves as a mechanism 
for embedding clinical prior knowledge into the mode-
ling process. For each identified patient cluster, a separate 
reinforcement learning model is trained using the CQL 
algorithm, enabling personalized policy learning tailored 
to specific clinical profiles. CQL is particularly well-suited 
for offline settings, as it constrains the learned Q-values 
to avoid overestimation for out-of-distribution actions, 
thereby enhancing the safety and stability of the learned 
policy. Each model is trained on retrospective physician 
demonstration data, which comprising patient states, 
actions, and rewards. By incorporating domain knowl-
edge through clustering and leveraging the robustness of 
CQL, the framework aims to generate individualized ven-
tilator adjustment strategies that align more closely with 
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clinical reasoning, ultimately facilitating safer and more 
effective mechanical ventilation treatment.

Data extraction and pre‑processing
We utilized the MIMIC-III database, an open-access 
database containing data from the Beth Israel Deacon-
ess Medical Center between 2001 and 2012. Standardized 
Query Language (SQL) was employed to extract patient 
data into tables with four-hour time windows. For each 
patient, the following data were extracted: demograph-
ics, vital signs, lab values, fluids, and mechanical venti-
lation settings. The first 72  h of mechanical ventilation 
data were selected, and patient data were divided into 
states, actions, and rewards. For data imputation, similar 
to the approach taken by Kondrup, a hybrid method was 
used. If less than 30% of the data was missing, k-nearest 
neighbors (KNN) with k=3 was applied for imputation. 
For missing data between 30% and 95%, a time window 
sampling and hold method was employed, using the ini-
tial value to replace subsequent values until a new value 
was reached or the limit was met. When the initial value 
was missing, mean imputation was performed. Finally, 
for variables with more than 95% missing data, they 
were removed from the state space. After processing, the 
patient dataset consisted of 19,780 samples, including 36 
state variables.

Model of classification
K-means clustering is a distance-based algorithm that 
assigns samples to different clusters by minimizing the 
within-cluster sum of squared errors [33]. The algorithm 

iteratively adjusts the clustering centre to optimize the 
clustering results and selects an appropriate number of 
clusters to capture the underlying structure of the data. 
By using K-means clustering, we can categorize patients 
based on results of ABG analysis, with each cluster repre-
senting groups of patients sharing similar characteristics 
in terms of blood gas parameters. The features of each 
group provide insights into the physiological states of 
different patients, serving as a foundation for developing 
personalized treatment strategies. Therefore, K-means 
clustering plays a pivotal role in our methodology, acting 
as a bridge between traditional medical knowledge and 
advanced machine learning algorithms, thereby advanc-
ing the development of intelligent medical technologies.

We extracted relevant personal characteristics and 
effective blood gas analysis parameters as clustering 
features for the patients: age, gender, weight, spo2, ph, 
paco2, base excess, bicarbonate.

RL definition
The definition of our MDP is similar to the work of Peine, 
with the episode spanning from the patient’s intubation 
to the subsequent 72 h.

The state space consists of 36 variables:

•	Demographics: Age, gender, weight, readmission to the 
ICU, Elixhauser score;

•	Vital Signs: SOFA, SIRS, GCS, heart rate, sysBP, diaBP, 
meanBP, shock index, temperature, spo2;

•	Lab Values: Potassium, sodium, chloride, glucose, bun, 
creatinine, magnesium, carbon dioxide, Hb, WBC 
count, platelet count, ptt, pt, inr, pH, partial pressure 
of carbon dioxide, base excess, bicarbonate;

•	Fluids: Urine output, vasopressors, intravenous fluids, 
cumulative fluid balance.

The action space comprises three ventilator settings:

•	Volume of air in and out with each breath adjusted by 
ideal weight (Vt);

•	Positive End Expiratory Pressure (PEEP);
•	Fraction of Inspired Oxygen (FiO2).

The action space A is the Cartesian product of these 
three settings, therefore, an action is represented as a 
tuple a = (v, o, p) with v ∈ Vt , o ∈ FiO2 , and p ∈ PEEP.

The primary objective of our agent is to stabilize 
the patient’s ABG analysis indicators within the nor-
mal range and ensure long-term survival. In setting the 
reward function, we build upon the work of Kondrup 
et al., which defines a terminal reward r(st , at , st+1) where 
the value is -1 if the patient dies within 90 days, and +1 
otherwise. Since it is well-known that relying solely on 

Fig. 1  Model architecture
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sparse terminal rewards can lead to suboptimal RL task 
performance and inefficiencies in sample utilization [34]. 
APACHE-II is a widely used severity-of-disease scoring 
system designed to assess the condition of patients in the 
ICU [35]. The scoring system combines various physi-
ological parameters, age, and the patient’s chronic health 
status to predict the mortality risk of critically ill patients. 
Given the importance of blood gas analysis for ventila-
tor adjustments, we emphasize the inclusion of blood 
gas indicators in shaping the intermediate reward, build-
ing upon the APACHE-II score. The APACHE-II scores 
based on relevant physiological indicators are calculated 
according to a predetermined range and then summed 
up. For instance, regarding body temperature:

•	A temperature within the range of 36.0−38.4◦ C is 
assigned 0 points.

•	A temperature ranging from 38.5 to 38.9◦ C or from 
34.0 to 35.9◦ C is assigned 1 point.

•	A temperature within the range of 32.0−33.9◦ C is 
assigned 2 points.

•	A temperature ranging from 39.0 to 40.9◦ C or from 
30.0 to 31.9◦ C is assigned 3 points.

•	A temperature ≥ 41.0 ◦C or ≤ 29.9 ◦C is assigned 4 
points.

Given that ABG values constitute critically important 
indicators for adjusting ventilator settings, these ABG 
values are extracted for separate scoring and assigned a 
weighting factor of 2 in the APACHE-II calculation.

where bit is the Apache II score related to blood gas anal-
ysis of patient i at timestep t; cit is the Apache II score 
except blood gas analysis of patient i at timestep t, mi

t = 0 
if patient i is dead at timestep t and 1 otherwise, li is the 
length of patient i’s stay at the ICU, and maxA,minA are 
respectively the maximum and minimum possible values 
of our modified Apache II score.

Experiment
Baseline
We employed five baseline methods: the physician pol-
icy, the DeepVent model, the DeepVent+ model, the 
K-BCQ model ,the K-DDQN model and the K-CQL- 
model. The physician policy comprised all transitions 
(st , at , st+1) observed in the dataset, thereby represented 
the choices made by physicians treating patients in the 
MIMIC-III dataset. The DeepVent model, which served 

(8)
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+1 if t + 1 = li andmi
t+1 = 1

−1 if t + 1 = li andmi
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as the deep RL baseline, was the most advanced deep 
RL model currently used for ventilator adjustment. The 
DeepVent+ model extended the original DeepVent by 
incorporating ABG-based reward shaping, enabling the 
evaluation of whether reward shaping can enhance the 
performance of the model. The K-CQL- model builds 
upon the DeepVent model by incorporating cluster-
ing but does not include blood gas analysis-related 
intermediate rewards. It was used as the baseline for 
the reward function to evaluate whether adding blood 
gas analysis-related intermediate rewards can improve 
the performance of the model. The comparison of the 
modules between these three models and the K-CQL 
model is presented in Table  1. The K-BCQ model and 
the K-DDQN model can verify the effectiveness of 
CQL. Compared to BCQ, CQL incorporates a conserv-
ative mechanism that underestimates the Q-values for 
unobserved actions, thus preventing the policy from 
over-optimizing unreliable actions. The conservative 
Q-value estimation effectively mitigates Q-value over-
estimation, making the policy more safe.

Hyperparameters
In order to verify the advancement of K-means cluster-
ing in this method, we added a comparative experiment 
and compared it with some classical and representative 
clustering methods, including Gaussian Mixture Model 
(GMM), Agglomerative Clustering, Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN) and 
Spectral Clustering, the results were shown in Table 2. A 
Silhouette Score closer to 1, a higher Calinski-Harabasz 
Score, and a lower Davies-Bouldin Score indicate tighter 
intra-cluster cohesion and greater inter-cluster separa-
tion, signifying superior clustering performance.

The Silhouette Coefficient is one of the metrics used 
to evaluate the quality of clustering, particularly in 
K-means clustering. It helps determine the effective-
ness of the clustering results [36]. A high Silhouette 
Coefficient indicates that K-means successfully clusters 
the data under the current number of clusters, with 
data points tightly grouped within clusters and well-
separated between clusters. The Silhouette Coefficient 
s(i) for each data point i is defined as follows:

Table 1  Comparison of the modules of DeepVent, Deep-
Vent+, K-CQL- and K-CQL. ✗: module not included; ✓: mod-
ule included

Model DEEPVENT DEEPVENT+ K-CQL- K-CQL

K-means ✗ ✗ ✓ ✓
ABG-based intermedi-

ate rewards shaping
✗ ✓ ✗ ✓
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a(i) is the average distance between data point i and all 
other points within the same cluster; b(i) is the aver-
age distance between data point i and the nearest other 
cluster.

By calculating the average silhouette coefficient for dif-
ferent cluster numbers ranging from 2 to 10, as shown 
in Fig.  2, we found that the silhouette coefficient was 
highest when the number of clusters was 3, indicating 
the best clustering performance at this point. There-
fore, we chose 3 as the optimal number of clusters. The 
patient sample size was 19,780, divided into three clus-
ters with sizes of 5,728, 8,194, and 5,858, respectively. 
t-Distributed Stochastic Neighbor Embedding (t-SNE) 
is a technology for data dimensionality reduction and 

(9)s(i) =
b(i)− a(i)

max{a(i), b(i)}

visualization, primarily used to project high-dimensional 
data into lower-dimensional spaces (typically two or 
three dimensions) for a more intuitive understanding of 
data structure. Its core goals is to preserve local proxim-
ity relationships in the high-dimensional space, ensuring 
that similar points remain close in the low-dimensional 
space. The clustering results are shown in Fig. 3.

Regarding the selection of parameters in deep rein-
forcement learning, the patient dataset was divided into 
80% for the training set and 20% for the validation set. 
Based on the parameter grid search strategy outlined in 
the work of Kondrup et  al., the optimal values for CQL 
are determined as γ = 0.75 , η = 1× 10−6 and α = 0.1 . 
The optimal architecture consisted of two hidden lay-
ers, each with 256 units and ReLU activation functions. 
The models were run on an NVIDIA GeForce RTX 3090 
GPU. Eeah model was then run for 2 million steps across 

Table 2  Values of Silhouette Score, Calinski–Harabasz Score, and Davies–Bouldin Score for the five clustering methods

Clustering model K-means GMM Agglomerative DBSCAN Spectral

Silhouette Score 0.468 0.389 0.373 − 0.345 0.237

Calinski-Harabasz Score 16637.743 16582.070 15699.460 2090.266 7848.249

Davies-Bouldin Score 0.889 0.895 0.937 2.048 0.848

Fig. 2  Plot of silhouette coefficient as a function of the number of clusters. A higher silhouette coefficient indicates that the K-means algorithm 
achieves better clustering performance for the current number of clusters
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five iterations with seed numbers 42, 43, 44, 45, and 46 
respectively, and the results were averaged. Each training 
session took approximately 16 h to 25 h to complete, with 
slight variations in runtime across different algorithms.

Evaluation of performance
In online RL, policies are typically evaluated through 
interactions with the environment. However, when the 
environment involves real patients in a medical context, 
evaluating policies in this online manner poses significant 
risks. Therefore, this study employed off-policy evalua-
tion (OPE) to assess the policy using the dataset. The per-
formance of these methods has recently been evaluated 
in medical settings, with FQE consistently provided the 
most accurate results [37]. Based on the current policy 
and offline data, FQE utilizes a fitted model to iteratively 
update the Q-values, allowing it to better approximate 
the true Q-function. Once the Q-function has converged, 
the performance of the policy can be evaluated by com-
puting the expected value of the Q-values. Specifically, 
for each state, the Q-value corresponding to the optimal 
action is selected, and the average of these Q-values is 
calculated to obtain the overall performance of the pol-
icy. The performance of a policy can then be computed 
by taking the mean initial state value, where the initial 

state represents the first four hours of ventilation. Since 
the physician’s policy effectively generates the episodes in 
the dataset, the cumulative discounted reward for each 
initial state can be calculated based on the episodes start-
ing from that state.

Result
We first conducted ablation experiments on K-CQL 
to demonstrate the effectiveness of both K-means and 
ABG-based intermediate rewards shaping, then we 
investigated the performance of the K-CQL algorithm 
using FQE and compared it with other advanced mod-
els, demonstrating that K-CQL achieved superior perfor-
mance. Subsequently, we analyzed the action distribution 
suggested by K-CQL, which indicated that the selected 
actions aligned with clinical recommendations. Finally, 
we further evaluated our model in out-of-distribution 
(OOD) scenarios, showing that K-CQL maintained high 
performance when applied to OOD patients, making it a 
safer option for real world.

Overall performance
We first conducted ablation experiments to demonstrate 
the effectiveness of K-means and ABG-based interme-
diate rewards shaping. The four algorithms presented 

Fig. 3  Plot of clustering results. Downgrade multi-dimensional data to two-dimensional data for visual clustering
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in Table  2 serve as comparative models in the ablation 
experiments. Then, we compared the performance of 
K-CQL-, K-CQL, K-DDQN, K-BCQ, physicians, Deep-
Vent+ and DeepVent based on FQE (Table  3), with a 
95% confidence level. The performance of K-CQL was 
obtained by averaging the results of deep offline rein-
forcement learning training performed separately on the 
three clusters of data.

The performance of K-CQL- is currently 1.10 times 
that of the state-of-the-art DeepVent. When interme-
diate rewards related to Arterial Blood Gas analysis are 
incorporated, the factor increases to 1.19. Compared to 
DeepVent, both the incorporation of K-means and the 
introduction of ABG-based intermediate rewards shap-
ing further enhance the model’s performance. The evalu-
ation value of the K-DDQN algorithm is too small, while 
the K-BCQ algorithm yields negative evaluation values, 
both algorithms cannot adapt to this scenario. There-
fore, our results indicate that the performance of K-CQL 
is significantly superior to that of both physician and 
DeepVent.

Distribution of suggested actions
Next, we evaluated the action distribution of K-CQL in 
comparison to DeepVent, K-BCQ, K-DDQN and human 
physicians. PEEP is frequently set to 5 cmH2O, but it 
can be personalized based on changes in physiologi-
cal parameters [38]. As shown in Fig.  4, K-CQL made 
most of its recommendations in the 0–5 cmH2O range. 
Higher PEEP settings are significantly associated with an 
increased risk of barotrauma and pneumothorax [39], 
this situation should be prevented. K-CQL aligned with 
clinical care standards regarding FiO2, making recom-
mendations similar to those of physicians in the MIMIC-
III dataset, particularly in the 35-50% and >55% ranges. 
Lastly, for the optimal weight-adjusted tidal volume, the 
recommended range is typically within the 4-8  ml/kg 
range [40]. K-CQL made most of its options within the 
5-10 ml/kg range. The action distribution of K-DDQN is 
relatively uniform, making it clearly unsuitable as an out-
put policy. Although the output policies of both K-BCQ 
and DeepVent align with clinical standards, they did not 
achieve as high mean initial state values as K-CQL, as 
shown in Table 2. To sum up, we observed that K-CQL 
was able to provide safe recommendations based on clin-
ical care standards for patients when compared to physi-
cian strategies.

Performance in OOD
BCQ and CQL are two commonly used algorithms for 
offline reinforcement learning, both designed to learn 
policies from offline data while mitigating the issue of 
Q-value overestimation.

Q-value overestimation is a frequent problem in offline 
reinforcement learning, which, in clinical settings, could 
lead to unsafe parameter recommendations for patients. 
Therefore, we investigated whether the recommendations 
made by K-BCQ and K-CQL could combat the overesti-
mation of OOD state-action pairs. Similar to the work of 
Kondrup, we generated an OOD dataset to explore the 
overestimation issue in reinforcement learning. Outlier 
patients were defined as those whose state features at the 
initiation of mechanical ventilation fell within the top 
and bottom 1% of the distribution. Approximately 25% of 
the patients were classified as outliers. We here compute 
the mean initial Q values for K-BCQ and K-CQL esti-
mated by FQE trained on our dataset, both in and out of 
distribution.

Since the maximum return without intermediate 
rewards in our dataset is set to 1, and FQE was trained 
on this dataset, any value above 1 should be considered 
an overestimation. As shown in Fig. 5, K-BCQ overesti-
mated the values in both ID and OOD settings, and this 
overestimation was exacerbated in the OOD setting, 
indicating that the BCQ algorithm does not completely 
eliminate overestimation. CQL addresses Q-value overes-
timation more directly and systematically than BCQ. The 
core idea of CQL is to actively suppress overestimation, 
thus avoiding these issues. The average initial state value 
estimates of K-CQL remained below the overestimation 
threshold of 1 in both settings, with little variation in the 
OOD setting, demonstrating the stability of model across 
both scenarios.

Conclusion
In this paper, we propose a knowledge and data-driven 
approach to achieve adaptive ventilator parameter 
adjustment for the treatment of patients with respira-
tory failure, aiming to realize personalized treatment. 
We introduce K-CQL algorithm model, which is based 
on ABG analysis clustering and offline deep reinforce-
ment learning, for individualized ventilator parameter 
adjustment. Our validation results, based on FQE, dem-
onstrate that K-CQL outperforms both physicians and 
the DeepVent model. More importantly, incorporating 

Table 3  Mean initial state value estimates for physician, DeepVent, DeepVent+, K-DDQN, K-BCQ, K-CQL- and K-CQL

Model PHYSICIAN DEEPVENT DEEPVENT+ K-DDQN K-BCQ K-CQL- K-CQL

Value 0.502 ± 0.007 0.743 ± 0.005 0.765 ± 0.004 0.050 ± 0.014 − 157.030 ± 2.551 0.814 ± 0.001 0.883 ± 0.003
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intermediate rewards related to ABG analysis further 
enhances performance. The action distribution plots, 
used for auxiliary validation, indicate that the K-CQL 
algorithm has learned to select actions that align with 
physician preferences, while also considering the 

long-term consequences of actions to improve therapeu-
tic effect of patient. Moreover, compared to the K-BCQ 
algorithm, K-CQL exhibits greater stability when con-
fronted with out-of-distribution data, proving the safety 
of the algorithm and its ability to reduce patient risk.

Fig. 4  Ventilator action distribution map of the strategies output by Physician, DeepVent, K-CQL, K-BCQ and K-DDQN. The strategy of K-CQL output 
meets clinical criteria. The horizontal axis represents the discretized action range, and the vertical axis represents the frequency of each action 
selected in the test set
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