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Abstract

Mechanical ventilation is employed as a supportive therapy for patients with respiratory failure, but the optimal
ventilator settings for patient are often unknown and rely on manual adjustment by physicians. Improper parameter
settings may lead to severe complications such as lung injury. To personalize mechanical ventilation and predict

the optimal ventilator parameters for patients, we propose a ventilator parameter tuning algorithm. This algorithm
integrates clinical expertise in ventilator tuning via Arterial Blood Gas (ABG) analysis with data-driven methods. We
perform K-means clustering algorithm on patient dataset based on ABG values for the first time, and the classified
data was used to train a deep offline reinforcement learning model based on conservative Q-learning (CQL), therefore
we named it the K-CQL algorithm. The introduction of human expert knowledge improves the effectiveness of the
entire model. Our evaluation based on Fitted Q Evaluation (FQE) on the MIMIC-IIl dataset shows that the expected
return of the output strategy of K-CQL is 1.76 times that of the physicians, and more importantly, the introduction of
intermediate rewards related to ABG analysis further improves it. We also demonstrated that the algorithm is capable
of recommending mechanical ventilation parameters within a safe range according to clinical nursing standards.

Keywords: Mechanical ventilation, Arterial blood gas analysis, Deep offline reinforcement learning, Conservative

g-learning, K-means

Introduction

Respiratory failure is caused by multiple factors leading to
dysfunction in pulmonary ventilation and gas exchange,
which, if not treated in time, can result in multi-organ
failure and even life-threatening consequences [1]. Thus,
symptomatic and causal treatments are required based
on clinical symptoms and test results, including the use
of mechanical ventilation to control the disease. The opti-
mal ventilator settings vary between individuals and are
generally unknown [2], requiring manual adjustments by
physicians based on the patient’s condition. The accuracy
of these adjustments is directly influenced by the physi-
cian’s knowledge and experience, and incorrect param-
eter tuning can worsen the patient’s condition or even
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lead to death. For instance, improper ventilator settings
may cause ventilator-induced lung injury, diaphragmatic
dysfunction, pneumonia, and oxygen toxicity [3]. To pre-
vent such complications and provide optimal care, per-
sonalized mechanical ventilation is essential. Integrating
cutting-edge artificial intelligence (AI) technologies to
explore suitable strategies for ventilator adjustments has
become a critical research focus at the intersection of
medicine and engineering.

Traditionally, recommendations for ventilator param-
eters in medical settings have relied on automatic control
principles. For example, [4] applied adaptive fuzzy slid-
ing mode control (AFSMC) to the respiratory system to
aid patients with respiratory distress; [5] used a propor-
tional-integral (PI) controller to develop a closed-loop
respiratory pacemaker model. However, these traditional
approaches often exhibit limited adaptability when it
comes to adjusting parameters. The application of rein-
forcement learning in the medical field shows a good
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prospect [6, 7, 9]. More recent research has proposed
the use of machine learning to personalize mechanical
ventilation treatments, with a focus on supervised learn-
ing and reinforcement learning (RL). In [10], a bayesian
classification model was used to classify patient’s illness,
followed by an artificial neural network (ANN) to output
parameters such as frequency, tidal volume, and fraction
of inspired oxygen. However, deep supervised learning,
while allowing feature extraction, overlooks the sequen-
tial nature of mechanical ventilation. Furthermore,
supervised learning methods can only imitate physician’s
decision, which may lead to suboptimal treatment. RL,
on the other hand, interacts with the environment and
receives immediate feedback from patients in the form
of rewards, considering the accumulation of future dis-
counted rewards [11-13], thereby improving physician’s
strategies and is widely used in the medical field [6].

Recent studies have shown that RL holds great poten-
tial in mechanical ventilation. It has been proven to
be suitable for solving decision-making problems in
time-series data and can potentially address ventila-
tor parameter tuning [14, 15]. Peine et al. [16] described
the ventilator management process as a Markov deci-
sion process (MDP) and employed the Q-learning algo-
rithm to recommend ventilator parameters. Chen et al.
[15] designed a simulated environment using a long
short-term memory (LSTM) network and used the soft
actor-critic (SAC) algorithm to provide clinical deci-
sion support for ventilator parameter adjustments. Kon-
drup et al. [17] introduced DeepVent, an offline deep RL
model based on Conservative Q-learning (CQL) to pre-
dict optimal ventilator parameters, and compare it with
Double Deep Q Network (DDQN). In [18] , transformer
was combined with CQL [19] to propose a model capable
of diagnosing patient’s conditions and predicting opti-
mal ventilator parameters. Zhang et al. [1] were the first
to consider safety issues in ventilator parameter recom-
mendations by identifying the optimal policy from a fixed
dataset.

However, to the best of our knowledge, previous work
on modeling ventilator adjustments using MDP has pri-
marily remained theoretical, without focusing on indica-
tors of Arterial Blood Gas (ABG) analysis. In real clinical
settings, ABG analysis indicators are highly correlated
with the gas exchange process [20], physicians adjust
ventilator parameters based on it, as ABG analysis pro-
vides better guidance for ventilator adjustments [21]. For
instance, [22] developed a mathematical model based on
ABG analysis to assess patients’ conditions and analyze
gas exchange during ventilation. Therefore, we embed-
ded a K-means clustering model into the RL decision-
making algorithm, incorporating prior knowledge from
physicians who use ABG analysis to adjust ventilator
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parameters. By clustering patients based on ABG analysis
before training, this approach optimizes treatment strate-
gies and further improves therapeutic outcomes.

Our main contributions can be summarized as follows:

+ Pre-classifying patients based on ABG analysis indica-
tors is proposed for the first time, combining clini-
cal knowledge from physicians adjusting ventilators
with data-driven algorithms, thereby incorporating
human prior knowledge. Specifically, a ventilator
adjustment model algorithm (termed K-CQL) using
K-means clustering based on ABG analysis and CQL
algorithm is developed. Additionally, intermediate
rewards related to ABG analysis indicators is defined
to achieve faster convergence.

+ The performance of the K-CQL algorithm, the Deep-
Vent algorithm (currently the most popular deep RL
model for ventilator adjustment), and the physician’s
strategies from the MIMIC-III dataset was evalu-
ated and compared using Fitted Q Evaluation (FQE)
based on publicly available MIMIC-III dataset [23].
The results demonstrated that the output policy of
K-CQL algorithm achieved the highest expected
return value, which is 1.19 times that of the Deep-
Vent algorithm and 1.76 times that of the physicians,
thereby exhibiting superior performance.

Related works

Algorithms for ventilation optimization

At present, methods for ventilation optimization in hos-
pitals typically rely on Proportional-Integral-Derivative
(PID) control, which is known to be suboptimal [24].
Siu et al. [25]designed a closed-loop adaptive controller
to automatically adjust settings of ventilator based on
analysis of arterial carbon dioxide. Ai et al. [5]introduced
a closed-loop respiratory pacemaker, using a PI control-
ler to adapt to various ventilation conditions. However,
traditional automatic control methods evaluate a lim-
ited number of data features and are inefficient in han-
dling high-dimensional and large-scale clinical data [26].
Machine learning (ML) methods have demonstrated
their superiority in processing high-dimensional and
large datasets, making them effective tools in the medi-
cal field for handling extensive clinical data. Zhu et al.
[27] applied machine learning methods such as k-nearest
neighbors (KNN), logistic regression, decision trees, and
extreme gradient boosting to predict mortality in venti-
lated patients. Similarly, [10, 28] used deep neural net-
works to calculate outputs for frequency, tidal volume,
and fraction of inspired oxygen. However, these machine
learning approaches primarily focus on the relation-
ship between ventilator parameter changes and patient
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vital signs, without considering the long-term effects of
ventilators on patients. Compared to classical machine
learning methods, RL algorithms learn from interactions
with the environment to maximize long-term rewards
[29]. RL algorithms can simulate how clinicians opti-
mize ventilator parameters through continuous interac-
tion with patients, demonstrating potential to surpass
clinical standards and providing strong evidence for RL’s
application in this context. Additionally, RL's mechanism
of maximizing cumulative rewards enhances its perfor-
mance in solving optimization problems that account for
long-term effects [11]. RL have shown promising results
in off-policy evaluation for predicting continuous ven-
tilator parameters. Peine et al. [16] used Q-learning to
optimize ventilator settings such as positive end expira-
tory pressure, fraction of inspired oxygen, and tidal vol-
ume. Kondrup et al. [17]were the first to combine deep
learning with RL to adjust ventilator parameters. Chen
et al. [15] designed a simulated environment using a long
short-term memory (LSTM) network and utilized the
soft actor-critic (SAC) algorithm to provide recommen-
dations. Yuan et al. [18] combined transformer and CQL
to propose a model capable of diagnosing conditions of
patient and predicting optimal ventilator settings. Zhang
et al. [1] applied RL algorithms to identify optimal strat-
egies from a fixed dataset and were the first to address
safety issues in ventilator parameter recommendations,
ensuring improved efficacy and safety during treatment.

Models for parameter tuning

[16, 17] selected several physiological variables includ-
ing demographics, vital signs, lab values, and fluids
as the state space in their modeling of MDP, with [17]
incorporating changes in Acute Physiology and Chronic
Health Evaluation II (APACHE-II) scores as part of the
reward function. Clinically, physicians adjust ventilator
parameters based on ABG analysis, making it necessary
to develop a more clinically relevant RL-based ventila-
tor adjustment model to enhance practical applicability.
Chen et al. [15] considered ABG analysis states when
modeling the MDP but did not appropriately define
intermediate reward values. Wang et al. [22] developed
a mathematical model based on ABG analysis to deter-
mine whether the patient’s ABG analysis values were
within normal ranges, serving as a measure of whether
goals of mechanical ventilation were achieved. Ma et al.
[30] used data-driven and knowledge-driven machine
learning methods to predict organ failure in intensive
care unit (ICU) patients in real time, incorporating clini-
cal prior knowledge. Based on these considerations, we
embedded a classification model into the RL decision-
making algorithm. By classifying patients based on ABG
analysis indicators before training, the prior knowledge
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of physicians using ABG analysis to adjust ventilator
parameters is integrated, that is to say, the professional
knowledge of physicians is effectively combined with
data-driven algorithms to optimize treatment strategies
and further improve treatment effects.

Background

Reinforcement learning

In a RL problem, we typically model it as a MDP, repre-
sented by the tuple (S,A4,P,R,y), where S denotes the
state space, A denotes the action space, P represents the
transition probability matrix, R and y are the reward
function and discount factor, respectively. A policy is
defined as 7 : S — A and is trained to maximize the
expected cumulative discounted reward in the MDP:

max E
T

> yfR(st,nwst»] (1)

t=0

Generally, a Q-value function is defined to represent the
expected cumulative reward:

> VIR(se, 7 (aylsy)

t=0

Q"(s,a) =E

S, a] (2)

Q-Learning is a classic method that trains the Q-value
function by minimizing the Bellman error on Q:

Q <« arg innE [R(s, a)+vy max Qs a) — QGs, a)}
3)

Offline reinforcement learning and conservative
Q-learning

Traditional RL often refers to online RL. In this scenario,
the agent needs to continually interact online with the
environment to obtain feedback. However, this approach
is not permitted in healthcare settings, as it may put
patients at risk. Offline RL algorithms can learn effective
policies from previously collected static datasets without
the need for further interactions, making them highly
applicable in clinical settings. However, in practice,
offline RL presents a major challenge: standard offline RL
methods may suffer from Q-value overestimation due to
distributional shift between the dataset and the learned
policy. In healthcare settings, this overestimation may
translate into unsafe recommendations, putting patients
at risk. CQL aims to address these limitations by learn-
ing a conservative Q-function, ensuring that the expected
value of the policy is lower-bounded by the true value
under this Q-function. CQL achieves this by introduc-
ing a conservative term that penalizes actions deviating
significantly from the data distribution, thus preventing
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overestimating. Specifically, it attempts to underestimate
the Q-values of out-of-distribution (OOD) state-action
pairs, thereby discouraging the agent from entering OOD
states. Therefore, the optimization objective of CQL
becomes:

Q < arg inn a- DESN’D,uNJr(a\s)Q(Sr a) — ]Es,uN’D QCs, ﬂ)}

1 o 2 (4)
35 (R(s,a) +ymaxQls,a) — QGs, a))

The parameter « is a weighting hyperparameter used to
control the strength of the penalty term. CQL suppresses
the overestimation of actions that are infrequent in the
dataset by maximizing the Q-values for actions a ~ D
observed in the data, while minimizing the Q-values for
actions with high Q-values under the learned policy 7.

Batch-constrained Q-learning

Similar to CQL, Batch-Constrained Q-learning (BCQ)
[31] was proposed to address the distributional shift
problem in offline reinforcement learning. BCQ primar-
ily focuses on constraining the policy’s reliance on unseen
state-action pairs from the offline dataset to mitigate the
risks associated with distributional shift. When learning
a policy directly from a static dataset, BCQ attempts to
restrict the policy’s action choices to align more closely
with the observed behaviors, thus avoiding unsafe deci-
sions that may arise from selecting actions that deviate
from the data distribution. It introduces a generative
model (such as a Variational Autoencoder, VAE) to gen-
erate candidate actions that are similar to those observed
in the data, from which actions are selected to ensure
that the policy does not significantly deviate from the his-
torical distribution:

p(a|s) ~ VAE(als) (5)
a = arg g?eai( Q(s,a’) - 1(a’ € VAE(als)) 6)

1(a’ € VAE(als)) is a constraint that ensures only actions
with a high probability in the generative model are
selected.

This design effectively reduces the risk associated with
out-of-distribution actions.

K-means

K-means is an unsupervised learning clustering algo-
rithm widely applied in various data analysis and classi-
fication tasks across different fields. Its primary objective
is to partition the samples in a dataset into k distinct clus-
ters, such that the samples within the same cluster are as
similar as possible, while the differences between samples
in different clusters are maximized [32]. The core idea of
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the K-means algorithm is to minimize the total sum of
squared errors (SSE) within clusters. The workflow of the
algorithm is as follows:

(1) Initialization: Randomly select k points as the initial
cluster centroids;

(2) Cluster assignment: Assign each sample to the
nearest cluster based on the distance between the
sample and the cluster centroid;

(3) Centroid update: Recompute the centroid of each
cluster by averaging the positions of all samples
within the cluster;

(4) Iteration: Repeat steps 2 and 3 until the centroids
converge or a predefined stopping criterion is met.

The objective function of K-means is to minimize SSE
within the clusters.

k
J=Y > llx—mal® (7)

i=1 xEC,'

where k is the number of clusters, C; represents the i-
th cluster, u; is the centroid of the i-th cluster and x is a
sample point in cluster C;.

By iteratively adjusting the position of the cluster cen-
troids and reassigning the samples, the algorithm mini-
mizes the intra-cluster variance, achieving the optimal
clustering outcome.

Method

An overview of the model architecture is here in Fig. 1.
This figure illustrates a framework for ventilator param-
eter optimization that integrates expert knowledge with
offline reinforcement learning. The overall pipeline
begins with the analysis of patients’” ABG indices, which
are used to cluster patients into distinct subgroups with
similar physiological characteristics via the K-means
algorithm. This clustering process serves as a mechanism
for embedding clinical prior knowledge into the mode-
ling process. For each identified patient cluster, a separate
reinforcement learning model is trained using the CQL
algorithm, enabling personalized policy learning tailored
to specific clinical profiles. CQL is particularly well-suited
for offline settings, as it constrains the learned Q-values
to avoid overestimation for out-of-distribution actions,
thereby enhancing the safety and stability of the learned
policy. Each model is trained on retrospective physician
demonstration data, which comprising patient states,
actions, and rewards. By incorporating domain knowl-
edge through clustering and leveraging the robustness of
CQL, the framework aims to generate individualized ven-
tilator adjustment strategies that align more closely with
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Fig. 1 Model architecture

clinical reasoning, ultimately facilitating safer and more
effective mechanical ventilation treatment.

Data extraction and pre-processing

We utilized the MIMIC-III database, an open-access
database containing data from the Beth Israel Deacon-
ess Medical Center between 2001 and 2012. Standardized
Query Language (SQL) was employed to extract patient
data into tables with four-hour time windows. For each
patient, the following data were extracted: demograph-
ics, vital signs, lab values, fluids, and mechanical venti-
lation settings. The first 72 h of mechanical ventilation
data were selected, and patient data were divided into
states, actions, and rewards. For data imputation, similar
to the approach taken by Kondrup, a hybrid method was
used. If less than 30% of the data was missing, k-nearest
neighbors (KNN) with k=3 was applied for imputation.
For missing data between 30% and 95%, a time window
sampling and hold method was employed, using the ini-
tial value to replace subsequent values until a new value
was reached or the limit was met. When the initial value
was missing, mean imputation was performed. Finally,
for variables with more than 95% missing data, they
were removed from the state space. After processing, the
patient dataset consisted of 19,780 samples, including 36
state variables.

Model of classification

K-means clustering is a distance-based algorithm that
assigns samples to different clusters by minimizing the
within-cluster sum of squared errors [33]. The algorithm
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iteratively adjusts the clustering centre to optimize the
clustering results and selects an appropriate number of
clusters to capture the underlying structure of the data.
By using K-means clustering, we can categorize patients
based on results of ABG analysis, with each cluster repre-
senting groups of patients sharing similar characteristics
in terms of blood gas parameters. The features of each
group provide insights into the physiological states of
different patients, serving as a foundation for developing
personalized treatment strategies. Therefore, K-means
clustering plays a pivotal role in our methodology, acting
as a bridge between traditional medical knowledge and
advanced machine learning algorithms, thereby advanc-
ing the development of intelligent medical technologies.

We extracted relevant personal characteristics and
effective blood gas analysis parameters as clustering
features for the patients: age, gender, weight, spo2, ph,
paco2, base excess, bicarbonate.

RL definition
The definition of our MDP is similar to the work of Peine,
with the episode spanning from the patient’s intubation
to the subsequent 72 h.

The state space consists of 36 variables:

« Demographics: Age, gender, weight, readmission to the
ICU, Elixhauser score;

+ Vital Signs: SOFA, SIRS, GCS, heart rate, sysBP, diaBP,
meanBP, shock index, temperature, spo2;

« Lab Values: Potassium, sodium, chloride, glucose, bun,
creatinine, magnesium, carbon dioxide, Hb, WBC
count, platelet count, ptt, pt, inr, pH, partial pressure
of carbon dioxide, base excess, bicarbonate;

« Fluids: Urine output, vasopressors, intravenous fluids,
cumulative fluid balance.

The action space comprises three ventilator settings:

+ Volume of air in and out with each breath adjusted by
ideal weight (Vt);

+ Positive End Expiratory Pressure (PEEP);

« Fraction of Inspired Oxygen (FiO2).

The action space A is the Cartesian product of these
three settings, therefore, an action is represented as a
tuple a = (v,0,p) withv € Vi, 0 € F;Oy, and p € PEEP.
The primary objective of our agent is to stabilize
the patient's ABG analysis indicators within the nor-
mal range and ensure long-term survival. In setting the
reward function, we build upon the work of Kondrup
et al., which defines a terminal reward r (s, gz, S¢+1) where
the value is -1 if the patient dies within 90 days, and +1
otherwise. Since it is well-known that relying solely on
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sparse terminal rewards can lead to suboptimal RL task
performance and inefficiencies in sample utilization [34].
APACHE-II is a widely used severity-of-disease scoring
system designed to assess the condition of patients in the
ICU [35]. The scoring system combines various physi-
ological parameters, age, and the patient’s chronic health
status to predict the mortality risk of critically ill patients.
Given the importance of blood gas analysis for ventila-
tor adjustments, we emphasize the inclusion of blood
gas indicators in shaping the intermediate reward, build-
ing upon the APACHE-II score. The APACHE-II scores
based on relevant physiological indicators are calculated
according to a predetermined range and then summed
up. For instance, regarding body temperature:

+A temperature within the range of 36.0—38.4°C is
assigned 0 points.

« A temperature ranging from 38.5 to 38.9°C or from
34.0 to 35.9°C is assigned 1 point.

+A temperature within the range of 32.0—33.9°C is
assigned 2 points.

« A temperature ranging from 39.0 to 40.9°C or from
30.0 to 31.9°C is assigned 3 points.

+ A temperature > 41.0°C or <29.9°C is assigned 4
points.

Given that ABG values constitute critically important
indicators for adjusting ventilator settings, these ABG
values are extracted for separate scoring and assigned a
weighting factor of 2 in the APACHE-II calculation.

+1 ift—l—l:ll-andmi_H:l
r={ -1 o v ift+1=/4Landm, =0
2, —bi)+(cl, —ch)

s —ming otherwise

(8)
where bi is the Apache II score related to blood gas anal-
ysis of patient i at timestep £ ci is the Apache II score
except blood gas analysis of patient i at timestep £, . = 0
if patient i is dead at timestep ¢ and 1 otherwise, /; is the
length of patient i's stay at the ICU, and max4, miny are
respectively the maximum and minimum possible values
of our modified Apache II score.

Experiment

Baseline

We employed five baseline methods: the physician pol-
icy, the DeepVent model, the DeepVent+ model, the
K-BCQ model ,the K-DDQN model and the K-CQL-
model. The physician policy comprised all transitions
(8¢, at, se+1) observed in the dataset, thereby represented
the choices made by physicians treating patients in the
MIMIC-III dataset. The DeepVent model, which served
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as the deep RL baseline, was the most advanced deep
RL model currently used for ventilator adjustment. The
DeepVent+ model extended the original DeepVent by
incorporating ABG-based reward shaping, enabling the
evaluation of whether reward shaping can enhance the
performance of the model. The K-CQL- model builds
upon the DeepVent model by incorporating cluster-
ing but does not include blood gas analysis-related
intermediate rewards. It was used as the baseline for
the reward function to evaluate whether adding blood
gas analysis-related intermediate rewards can improve
the performance of the model. The comparison of the
modules between these three models and the K-CQL
model is presented in Table 1. The K-BCQ model and
the K-DDQN model can verify the effectiveness of
CQL. Compared to BCQ, CQL incorporates a conserv-
ative mechanism that underestimates the Q-values for
unobserved actions, thus preventing the policy from
over-optimizing unreliable actions. The conservative
Q-value estimation effectively mitigates Q-value over-
estimation, making the policy more safe.

Hyperparameters

In order to verify the advancement of K-means cluster-
ing in this method, we added a comparative experiment
and compared it with some classical and representative
clustering methods, including Gaussian Mixture Model
(GMM), Agglomerative Clustering, Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN) and
Spectral Clustering, the results were shown in Table 2. A
Silhouette Score closer to 1, a higher Calinski-Harabasz
Score, and a lower Davies-Bouldin Score indicate tighter
intra-cluster cohesion and greater inter-cluster separa-
tion, signifying superior clustering performance.

The Silhouette Coefficient is one of the metrics used
to evaluate the quality of clustering, particularly in
K-means clustering. It helps determine the effective-
ness of the clustering results [36]. A high Silhouette
Coefficient indicates that K-means successfully clusters
the data under the current number of clusters, with
data points tightly grouped within clusters and well-
separated between clusters. The Silhouette Coefficient
s(i) for each data point i is defined as follows:

Table 1 Comparison of the modules of DeepVent, Deep-
Vent+, K-CQL- and K-CQL. x: module not included; v: mod-
ule included

Model DEEPVENT DEEPVENT+ K-CQL- K-CQL
K-means X X v v
ABG-based intermedi- X v X v

ate rewards shaping
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Table 2 Values of Silhouette Score, Calinski-Harabasz Score, and Davies-Bouldin Score for the five clustering methods

Clustering model K-means GMM Agglomerative DBSCAN Spectral
Silhouette Score 0468 0.389 0373 —0.345 0.237
Calinski-Harabasz Score 16637.743 16582.070 15699.460 2090.266 7848.249
Davies-Bouldin Score 0.889 0.895 0937 2.048 0.848
O b(i) — a(i) ©) visualization, primarily used to project high-dimensional
s()) = ————— 9

max{a(i), b(i)}

a(i) is the average distance between data point i and all
other points within the same cluster; b(i) is the aver-
age distance between data point i and the nearest other
cluster.

By calculating the average silhouette coefficient for dif-
ferent cluster numbers ranging from 2 to 10, as shown
in Fig. 2, we found that the silhouette coefficient was
highest when the number of clusters was 3, indicating
the best clustering performance at this point. There-
fore, we chose 3 as the optimal number of clusters. The
patient sample size was 19,780, divided into three clus-
ters with sizes of 5,728, 8,194, and 5,858, respectively.
t-Distributed Stochastic Neighbor Embedding (t-SNE)
is a technology for data dimensionality reduction and

data into lower-dimensional spaces (typically two or
three dimensions) for a more intuitive understanding of
data structure. Its core goals is to preserve local proxim-
ity relationships in the high-dimensional space, ensuring
that similar points remain close in the low-dimensional
space. The clustering results are shown in Fig. 3.
Regarding the selection of parameters in deep rein-
forcement learning, the patient dataset was divided into
80% for the training set and 20% for the validation set.
Based on the parameter grid search strategy outlined in
the work of Kondrup et al., the optimal values for CQL
are determined as y = 0.75, n =1 x 107° and o = 0.1.
The optimal architecture consisted of two hidden lay-
ers, each with 256 units and ReLU activation functions.
The models were run on an NVIDIA GeForce RTX 3090
GPU. Eeah model was then run for 2 million steps across
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Fig. 2 Plot of silhouette coefficient as a function of the number of clusters. A higher silhouette coefficient indicates that the K-means algorithm
achieves better clustering performance for the current number of clusters
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t-SNE visualization of KMeans clusters
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five iterations with seed numbers 42, 43, 44, 45, and 46
respectively, and the results were averaged. Each training
session took approximately 16 h to 25 h to complete, with
slight variations in runtime across different algorithms.

Evaluation of performance

In online RL, policies are typically evaluated through
interactions with the environment. However, when the
environment involves real patients in a medical context,
evaluating policies in this online manner poses significant
risks. Therefore, this study employed off-policy evalua-
tion (OPE) to assess the policy using the dataset. The per-
formance of these methods has recently been evaluated
in medical settings, with FQE consistently provided the
most accurate results [37]. Based on the current policy
and offline data, FQE utilizes a fitted model to iteratively
update the Q-values, allowing it to better approximate
the true Q-function. Once the Q-function has converged,
the performance of the policy can be evaluated by com-
puting the expected value of the Q-values. Specifically,
for each state, the Q-value corresponding to the optimal
action is selected, and the average of these Q-values is
calculated to obtain the overall performance of the pol-
icy. The performance of a policy can then be computed
by taking the mean initial state value, where the initial

state represents the first four hours of ventilation. Since
the physician’s policy effectively generates the episodes in
the dataset, the cumulative discounted reward for each
initial state can be calculated based on the episodes start-
ing from that state.

Result

We first conducted ablation experiments on K-CQL
to demonstrate the effectiveness of both K-means and
ABG-based intermediate rewards shaping, then we
investigated the performance of the K-CQL algorithm
using FQE and compared it with other advanced mod-
els, demonstrating that K-CQL achieved superior perfor-
mance. Subsequently, we analyzed the action distribution
suggested by K-CQL, which indicated that the selected
actions aligned with clinical recommendations. Finally,
we further evaluated our model in out-of-distribution
(OOD) scenarios, showing that K-CQL maintained high
performance when applied to OOD patients, making it a
safer option for real world.

Overall performance

We first conducted ablation experiments to demonstrate
the effectiveness of K-means and ABG-based interme-
diate rewards shaping. The four algorithms presented
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in Table 2 serve as comparative models in the ablation
experiments. Then, we compared the performance of
K-CQL-, K-CQL, K-DDQN, K-BCQ, physicians, Deep-
Vent+ and DeepVent based on FQE (Table 3), with a
95% confidence level. The performance of K-CQL was
obtained by averaging the results of deep offline rein-
forcement learning training performed separately on the
three clusters of data.

The performance of K-CQL- is currently 1.10 times
that of the state-of-the-art DeepVent. When interme-
diate rewards related to Arterial Blood Gas analysis are
incorporated, the factor increases to 1.19. Compared to
DeepVent, both the incorporation of K-means and the
introduction of ABG-based intermediate rewards shap-
ing further enhance the model’s performance. The evalu-
ation value of the K-DDQN algorithm is too small, while
the K-BCQ algorithm yields negative evaluation values,
both algorithms cannot adapt to this scenario. There-
fore, our results indicate that the performance of K-CQL
is significantly superior to that of both physician and
DeepVent.

Distribution of suggested actions

Next, we evaluated the action distribution of K-CQL in
comparison to DeepVent, K-BCQ, K-DDQN and human
physicians. PEEP is frequently set to 5 cmH2O, but it
can be personalized based on changes in physiologi-
cal parameters [38]. As shown in Fig. 4, K-CQL made
most of its recommendations in the 0-5 cmH2O range.
Higher PEEP settings are significantly associated with an
increased risk of barotrauma and pneumothorax [39],
this situation should be prevented. K-CQL aligned with
clinical care standards regarding FiO2, making recom-
mendations similar to those of physicians in the MIMIC-
III dataset, particularly in the 35-50% and >55% ranges.
Lastly, for the optimal weight-adjusted tidal volume, the
recommended range is typically within the 4-8 ml/kg
range [40]. K-CQL made most of its options within the
5-10 ml/kg range. The action distribution of K-DDQN is
relatively uniform, making it clearly unsuitable as an out-
put policy. Although the output policies of both K-BCQ
and DeepVent align with clinical standards, they did not
achieve as high mean initial state values as K-CQL, as
shown in Table 2. To sum up, we observed that K-CQL
was able to provide safe recommendations based on clin-
ical care standards for patients when compared to physi-
cian strategies.
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Performance in OOD

BCQ and CQL are two commonly used algorithms for
offline reinforcement learning, both designed to learn
policies from offline data while mitigating the issue of
Q-value overestimation.

Q-value overestimation is a frequent problem in offline
reinforcement learning, which, in clinical settings, could
lead to unsafe parameter recommendations for patients.
Therefore, we investigated whether the recommendations
made by K-BCQ and K-CQL could combat the overesti-
mation of OOD state-action pairs. Similar to the work of
Kondrup, we generated an OOD dataset to explore the
overestimation issue in reinforcement learning. Outlier
patients were defined as those whose state features at the
initiation of mechanical ventilation fell within the top
and bottom 1% of the distribution. Approximately 25% of
the patients were classified as outliers. We here compute
the mean initial Q values for K-BCQ and K-CQL esti-
mated by FQE trained on our dataset, both in and out of
distribution.

Since the maximum return without intermediate
rewards in our dataset is set to 1, and FQE was trained
on this dataset, any value above 1 should be considered
an overestimation. As shown in Fig. 5, K-BCQ overesti-
mated the values in both ID and OOD settings, and this
overestimation was exacerbated in the OOD setting,
indicating that the BCQ algorithm does not completely
eliminate overestimation. CQL addresses Q-value overes-
timation more directly and systematically than BCQ. The
core idea of CQL is to actively suppress overestimation,
thus avoiding these issues. The average initial state value
estimates of K-CQL remained below the overestimation
threshold of 1 in both settings, with little variation in the
OOD setting, demonstrating the stability of model across
both scenarios.

Conclusion

In this paper, we propose a knowledge and data-driven
approach to achieve adaptive ventilator parameter
adjustment for the treatment of patients with respira-
tory failure, aiming to realize personalized treatment.
We introduce K-CQL algorithm model, which is based
on ABG analysis clustering and offline deep reinforce-
ment learning, for individualized ventilator parameter
adjustment. Our validation results, based on FQE, dem-
onstrate that K-CQL outperforms both physicians and
the DeepVent model. More importantly, incorporating

Table 3 Mean initial state value estimates for physician, DeepVent, DeepVent+, K-DDQN, K-BCQ, K-CQL- and K-CQL

Model PHYSICIAN DEEPVENT DEEPVENT+

K-DDQN

K-BCQ K-CQL- K-CQL

Value 0.502 + 0.007 0.743 + 0.005 0.765 + 0.004

00500014

—157.030 £ 2.551 0.814 £0.001  0.883 #+ 0.003
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Fig. 4 Ventilator action distribution map of the strategies output by Physician, DeepVent, K-CQL, K-BCQ and K-DDQN. The strategy of K-CQL output
meets clinical criteria. The horizontal axis represents the discretized action range, and the vertical axis represents the frequency of each action

intermediate rewards related to ABG analysis further
enhances performance. The action distribution plots,
used for auxiliary validation, indicate that the K-CQL
algorithm has learned to select actions that align with
physician preferences, while also considering the

long-term consequences of actions to improve therapeu-
tic effect of patient. Moreover, compared to the K-BCQ
algorithm, K-CQL exhibits greater stability when con-
fronted with out-of-distribution data, proving the safety
of the algorithm and its ability to reduce patient risk.
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